Back to Search Start Over

Identification of basement membrane-related biomarkers associated with the diagnosis of osteoarthritis based on machine learning.

Authors :
Huang, Xiaojing
Meng, Hongming
Shou, Zeyu
Yu, Jiahuan
Hu, Kai
Chen, Liangyan
Zhou, Han
Bai, Zhibiao
Chen, Chun
Source :
BMC Medical Genomics. 8/23/2023, Vol. 16 Issue 1, p1-11. 11p.
Publication Year :
2023

Abstract

Background: Osteoarthritis is a very common clinical disease in middle-aged and elderly individuals, and with the advent of ageing, the incidence of this disease is gradually increasing. There are few studies on the role of basement membrane (BM)-related genes in OA. Method: We used bioinformatics and machine learning methods to identify important genes related to BMs in OA patients and performed immune infiltration analysis, lncRNA‒miRNA-mRNA network prediction, ROC analysis, and qRT‒PCR. Result: Based on the results of machine learning, we determined that LAMA2 and NID2 were the key diagnostic genes of OA, which were confirmed by ROC and qRT‒PCR analyses. Immune analysis showed that LAMA2 and NID2 were closely related to resting memory CD4 T cells, mast cells and plasma cells. Two lncRNAs, XIST and TTTY15, were simultaneously identified, and lncRNA‒miRNA‒mRNA network prediction was performed. Conclusion: LAMA2 and NID2 are important potential targets for the diagnosis and treatment of OA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17558794
Volume :
16
Issue :
1
Database :
Academic Search Index
Journal :
BMC Medical Genomics
Publication Type :
Academic Journal
Accession number :
170081612
Full Text :
https://doi.org/10.1186/s12920-023-01601-z