Back to Search Start Over

MGG: Monocular Global Geolocation for Outdoor Long-Range Targets.

Authors :
Gao, Feng
Deng, Fang
Li, Linhan
Zhang, Lele
Zhu, Jiaqi
Yu, Chengpu
Source :
IEEE Transactions on Image Processing. 2021, Vol. 30, p6349-6363. 15p.
Publication Year :
2021

Abstract

Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigation parameters as input and outputs targets’ GPS information under the Global Navigation Satellite System (GNSS). In MGG, we first design a camera pose correction method via pixel mapping to correct the pose of the camera. Then, we use anchor-based methods to improve the detection ability for long-range targets with small image regions. Next, the local monocular vision model (LMVM) with a local structure coefficient is proposed to establish an accurate 2D-to-3D mapping relationship. Subsequently, a soft correspondence constraint (SCC) is presented to solve the local structure coefficient, which can weaken the coupling degree between detection and localization. Finally, targets can be geolocated through optimization theory-based methods and a series of coordinate transformations. Furthermore, we demonstrate the importance of focal length on solving the error explosion problem in locating long-range targets with monocular vision. Extensive experiments on the challenging KITTI dataset as well as applications in outdoor environments with targets located at a long range of up to 150 meters show the superiority of our method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Academic Search Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077905
Full Text :
https://doi.org/10.1109/TIP.2021.3093789