Back to Search Start Over

Gradient-Based Feature Extraction From Raw Bayer Pattern Images.

Authors :
Zhou, Wei
Zhang, Ling
Gao, Shengyu
Lou, Xin
Source :
IEEE Transactions on Image Processing. 2021, Vol. 30, p5122-5137. 16p.
Publication Year :
2021

Abstract

In this paper, the impact of demosaicing on gradient extraction is studied and a gradient-based feature extraction pipeline based on raw Bayer pattern images is proposed. It is shown both theoretically and experimentally that the Bayer pattern images are applicable to the central difference gradient-based feature extraction algorithms with negligible performance degradation, as long as the arrangement of color filter array (CFA) patterns matches the gradient operators. The color difference constancy assumption, which is widely used in various demosaicing algorithms, is applied in the proposed Bayer pattern image-based gradient extraction pipeline. Experimental results show that the gradients extracted from Bayer pattern images are robust enough to be used in histogram of oriented gradients (HOG)-based pedestrian detection algorithms and shift-invariant feature transform (SIFT)-based matching algorithms. By skipping most of the steps in the image signal processing (ISP) pipeline, the computational complexity and power consumption of a computer vision system can be reduced significantly. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Academic Search Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077846
Full Text :
https://doi.org/10.1109/TIP.2021.3067166