Back to Search Start Over

Sample-Centric Feature Generation for Semi-Supervised Few-Shot Learning.

Authors :
Zhang, Bo
Ye, Hancheng
Yu, Gang
Wang, Bin
Wu, Yike
Fan, Jiayuan
Chen, Tao
Source :
IEEE Transactions on Image Processing. 2022, Vol. 31, p2309-2320. 12p.
Publication Year :
2022

Abstract

Semi-supervised few-shot learning aims to improve the model generalization ability by means of both limited labeled data and widely-available unlabeled data. Previous works attempt to model the relations between the few-shot labeled data and extra unlabeled data, by performing a label propagation or pseudo-labeling process using an episodic training strategy. However, the feature distribution represented by the pseudo-labeled data itself is coarse-grained, meaning that there might be a large distribution gap between the pseudo-labeled data and the real query data. To this end, we propose a sample-centric feature generation (SFG) approach for semi-supervised few-shot image classification. Specifically, the few-shot labeled samples from different classes are initially trained to predict pseudo-labels for the potential unlabeled samples. Next, a semi-supervised meta-generator is utilized to produce derivative features centering around each pseudo-labeled sample, enriching the intra-class feature diversity. Meanwhile, the sample-centric generation constrains the generated features to be compact and close to the pseudo-labeled sample, ensuring the inter-class feature discriminability. Further, a reliability assessment (RA) metric is developed to weaken the influence of generated outliers on model learning. Extensive experiments validate the effectiveness of the proposed feature generation approach on challenging one- and few-shot image classification benchmarks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
31
Database :
Academic Search Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077160
Full Text :
https://doi.org/10.1109/TIP.2022.3154938