Back to Search
Start Over
Analysis of Image Hashing in Wafer Map Failure Pattern Recognition.
- Source :
-
IEEE Transactions on Semiconductor Manufacturing . Aug2023, Vol. 36 Issue 3, p378-388. 11p. - Publication Year :
- 2023
-
Abstract
- There are mainly two types of wafer map failure pattern recognition, i.e., traditional classification based and deep learning based approaches. Traditional classification usually needs feature engineering, and deep learning requires lower human intervention and feature engineering. The joint requirement is noise filtering and identical input dimension size. Feature engineering and dimension resizing are artificial work and vary from study to study. In our study, we proposed an image hashing based wafer map resizing and pattern information retrieval framework. Traditional classification methods and CNN are employed for the wafer map failure pattern recognition. The experiments show that the image hashing based framework is the more appropriate method when compared to feature extraction and image resizing methods. We also found that proper input data manipulation can result in acceptable performance whether the used method is traditional classification algorithms or CNN. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08946507
- Volume :
- 36
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- IEEE Transactions on Semiconductor Manufacturing
- Publication Type :
- Academic Journal
- Accession number :
- 170043069
- Full Text :
- https://doi.org/10.1109/TSM.2023.3273810