Back to Search
Start Over
A universal bound in the dimensional Brunn-Minkowski inequality for log-concave measures.
- Source :
-
Transactions of the American Mathematical Society . Sep2023, Vol. 376 Issue 9, p6663-6680. 18p. - Publication Year :
- 2023
-
Abstract
- We show that for any even log-concave probability measure \mu on \mathbb {R}^n, any pair of symmetric convex sets K and L, and any \lambda \in [0,1], \begin{equation*} \mu ((1-\lambda) K+\lambda L)^{c_n}\geq (1-\lambda) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*} where c_n\geq n^{-4-o(1)}. This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures. [ABSTRACT FROM AUTHOR]
- Subjects :
- *PROBABILITY measures
*GAUSSIAN measures
*CONVEX sets
*MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 00029947
- Volume :
- 376
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- Transactions of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 170039174
- Full Text :
- https://doi.org/10.1090/tran/8976