Back to Search Start Over

Integrating biophysical crop growth models and whole genome prediction for their mutual benefit: a case study in wheat phenology.

Authors :
Jighly, Abdulqader
Weeks, Anna
Christy, Brendan
O'Leary, Garry J
Kant, Surya
Aggarwal, Rajat
Hessel, David
Forrest, Kerrie L
Technow, Frank
Tibbits, Josquin F G
Totir, Radu
Spangenberg, German C
Hayden, Matthew J
Munkvold, Jesse
Daetwyler, Hans D
Source :
Journal of Experimental Botany. 8/17/2023, Vol. 74 Issue 15, p4415-4426. 12p.
Publication Year :
2023

Abstract

Running crop growth models (CGM) coupled with whole genome prediction (WGP) as a CGM–WGP model introduces environmental information to WGP and genomic relatedness information to the genotype-specific parameters modelled through CGMs. Previous studies have primarily used CGM–WGP to infer prediction accuracy without exploring its potential to enhance CGM and WGP. Here, we implemented a heading and maturity date wheat phenology model within a CGM–WGP framework and compared it with CGM and WGP. The CGM–WGP resulted in more heritable genotype-specific parameters with more biologically realistic correlation structures between genotype-specific parameters and phenology traits compared with CGM-modelled genotype-specific parameters that reflected the correlation of measured phenotypes. Another advantage of CGM–WGP is the ability to infer accurate prediction with much smaller and less diverse reference data compared with that required for CGM. A genome-wide association analysis linked the genotype-specific parameters from the CGM–WGP model to nine significant phenology loci including Vrn-A1 and the three PPD1 genes, which were not detected for CGM-modelled genotype-specific parameters. Selection on genotype-specific parameters could be simpler than on observed phenotypes. For example, thermal time traits are theoretically more independent candidates, compared with the highly correlated heading and maturity dates, which could be used to achieve an environment-specific optimal flowering period. CGM–WGP combines the advantages of CGM and WGP to predict more accurate phenotypes for new genotypes under alternative or future environmental conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00220957
Volume :
74
Issue :
15
Database :
Academic Search Index
Journal :
Journal of Experimental Botany
Publication Type :
Academic Journal
Accession number :
170011813
Full Text :
https://doi.org/10.1093/jxb/erad162