Back to Search Start Over

From Reactive to Active Sensing: A Survey on Information Gathering in Decision-theoretic Planning.

Authors :
VEIGA, TIAGO
RENOUX, JENNIFER
Source :
ACM Computing Surveys. 2023 Suppl13s, Vol. 55, p1-22. 22p. 1 Illustration.
Publication Year :
2023

Abstract

In traditional decision-theoretic planning, information gathering is a means to a goal. The agent receives information about its environment (state or observation) and uses it as a way to optimize a state-based reward function. Recent works, however, have focused on application domains in which information gathering is not only the mean but the goal itself. The agent must optimize its knowledge of the environment. However, traditional Markov-based decision-theoretic models cannot account for rewarding the agent based on its knowledge, which leads to the development of many approaches to overcome this limitation. We survey recent approaches for using decision-theoretic models in information-gathering scenarios, highlighting common practices and existing generic models, and show that existing methods can be categorized into three classes: reactive sensing, single-agent active sensing, and multi-agent active sensing. Finally, we highlight potential research gaps and suggest directions for future research. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*EVIDENCE gaps
*SENSES

Details

Language :
English
ISSN :
03600300
Volume :
55
Database :
Academic Search Index
Journal :
ACM Computing Surveys
Publication Type :
Academic Journal
Accession number :
169987668
Full Text :
https://doi.org/10.1145/3583068