Back to Search Start Over

High-temperature behaviour of fedorite, Na2.5(Ca4.5Na2.5)[Si16O38]F2⋅2.8H2O, from the Murun Alkaline Complex, Russia.

Authors :
Lacalamita, Maria
Mesto, Ernesto
Kaneva, Ekaterina
Shendrik, Roman
Radomskaya, Tatiana
Schingaro, Emanuela
Source :
Mineralogical Magazine. Aug2023, Vol. 87 Issue 4, p542-553. 12p.
Publication Year :
2023

Abstract

The thermal behaviour of fedorite from the Murun massif, Russia, has been investigated by means of electron probe microanalysis (EPMA), differential thermal analysis (DTA), thermogravimetry (TG), in situ high-temperature single-crystal X-ray diffraction (HT-SCXRD), ex situ high-temperature Fourier-transform infrared spectroscopy (HT-FTIR). The empirical chemical formula of the sample of fedorite studied is: (Na1.56K0.72Sr0.12)Σ2.40(Ca4.42Na2.54Mn0.02Fe0.01Mg0.01)Σ7.00(Si15.98Al0.02)Σ16.00(F1.92Cl0.09)Σ2.01(O37.93OH0.07)Σ38.00⋅2.8H2O. The TG curve provides a total mass decrease of ~5.5%, associated with dehydration and defluorination processes from 25 to 1050°C. Fedorite crystallises in space group P $\bar{1}$ and has: a = 9.6458(2), b = 9.6521(2), c = 12.6202(4) Å, α = 102.458(2), β = 96.2250(10), γ = 119.9020(10)° and cell volume, V = 961.69(5) Å3. The HT-SCXRD was carried out in air in the 25–600°C range. Overall, a continuous expansion of the unit-cell volume was observed although the c cell dimension slightly decreases in the explored temperature range. Structure refinements indicated that the mineral undergoes a dehydration process with the loss of most of the interlayer H2O from 25 to 300°C. The HT-FTIR spectra confirmed that fedorite progressively dehydrates until 700°C. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0026461X
Volume :
87
Issue :
4
Database :
Academic Search Index
Journal :
Mineralogical Magazine
Publication Type :
Academic Journal
Accession number :
169930565
Full Text :
https://doi.org/10.1180/mgm.2023.31