Back to Search Start Over

Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array.

Authors :
Tang, Yawei
Deng, Weiming
Li, Jianfeng
Zhang, Xiaofei
Source :
Sensors (14248220). Aug2023, Vol. 23 Issue 15, p6984. 12p.
Publication Year :
2023

Abstract

Due to their ability to achieve higher DOA estimation accuracy and larger degrees of freedom (DOF) using a fixed number of antennas, sparse arrays, etc., nested and coprime arrays have attracted a lot of attention in relation to research into direction of arrival (DOA) estimation. However, the usage of the sparse array is based on the assumption that the signals are independent of each other, which is hard to guarantee in practice due to the complex propagation environment. To address the challenge of sparse arrays struggling to handle coherent wideband signals, we propose the following method. Firstly, we exploit the coherent signal subspace method (CSSM) to focus the wideband signals on the reference frequency and assist in the decorrelation process, which can be implemented without any pre-estimations. Then, we virtualize the covariance matrix of sparse array due to the decorrelation operation. Next, an enhanced spatial smoothing algorithm is applied to make full use of the information available in the data covariance matrix, as well as to improve the decorrelation effect, after which stage the multiple signal classification (MUSIC) algorithm is used to obtain DOA estimations. In the simulation, with reference to the root mean square error (RMSE) that varies in tandem with the signal-to-noise ratio (SNR), the algorithm achieves satisfactory results compared to other state-of-the-art algorithms, including sparse arrays using the traditional incoherent signal subspace method (ISSM), the coherent signal subspace method (CSSM), spatial smoothing algorithms, etc. Furthermore, the proposed method is also validated via real data tests, and the error value is only 0.2 degrees in real data tests, which is lower than those of the other methods in real data tests. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
15
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
169927379
Full Text :
https://doi.org/10.3390/s23156984