Back to Search Start Over

Vector Angular Continuity in the Fusion of Coseismic Deformations at Multiple Optical Correlation Scales.

Authors :
Guo, Rui
Zeng, Qiming
Lu, Shangzong
Source :
Sensors (14248220). Aug2023, Vol. 23 Issue 15, p6677. 16p.
Publication Year :
2023

Abstract

As one of the common techniques for measuring coseismic deformations, optical image correlation techniques are capable of overcoming the drawbacks of inadequate coherence and phase blurring which can occur in radar interferometry, as well as the problem of low spatial resolution in radar pixel offset tracking. However, the scales of the correlation window in optical image correlation techniques typically influence the results; the conventional SAR POT method faces a fundamental trade-off between the accuracy of matching and the preservation of details in the correlation window size. This study regards coseismic deformation as a two-dimensional vector, and develops a new post-processing workflow called VACI-OIC to reduce the dependence of shift estimation on the size of the correlation window. This paper takes the coseismic deformations in both the east–west and north–south directions into account at the same time, treating them as vectors, while also considering the similarity of displacement between adjacent points on the surface. Herein, the angular continuity index of the coseismic deformation vector was proposed as a more reasonable constraint condition to fuse the deformation field results obtained by optical image correlation across different correlation window. Taking the earthquake of 2021 in Maduo, China, as the study area, the deformation with the highest spatial resolution in the violent surface rupture area was determined (which could not be provided by SAR data). Compared to the results of single-scale optical correlation, the presented results were more uniform (i.e., more consistent with published results). At the same time, the proposed index also detected the strip fracture zone of the earthquake with impressive clarity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
15
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
169927072
Full Text :
https://doi.org/10.3390/s23156677