Back to Search
Start Over
The Removal of Pollutants from Wastewater Using Magnetic Biochar: A Scientometric and Visualization Analysis.
- Source :
-
Molecules . Aug2023, Vol. 28 Issue 15, p5840. 24p. - Publication Year :
- 2023
-
Abstract
- In recent years, the use of magnetic biochar in wastewater treatment has shown significant effects and attracted scholars' attention. However, due to the relatively short research time and the lack of systematic summaries, it is difficult to provide a more in-depth analysis. This study utilizes RStudio and CiteSpace software to comprehensively analyze the research trends and progress of magnetic biochar in wastewater treatment. The analysis of bibliometrics is performed on 551 relevant papers retrieved from the Web of Science, spanning the period between 2011 and 2022. The most influential countries, institutions, journals, disciplinary distribution, and top 10 authors and papers in this field have been identified. The latest dataset has been used for keyword clustering and burst analysis. The results indicated that: (1) Bin Gao is the most influential author in this field, and high-level journals such as Bioresource Technology are more inclined to publish articles in the field of magnetic biochar. (2) Research in this field has predominantly focused on the removal of heavy metals and organic compounds. Keyword burst analysis shows a shift in research direction towards the removal of complex organic pollutants recently. (3) For the future development of magnetic biochar, an environment-friendly approach, economic viability, and joint technology are the directions that need more exploration. Finally, this paper provides a summary of the various adsorption mechanisms of magnetic biochar and several common modification methods, aiming to assist scholars in their research endeavors. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 28
- Issue :
- 15
- Database :
- Academic Search Index
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- 169908912
- Full Text :
- https://doi.org/10.3390/molecules28155840