Back to Search Start Over

Enhancing the thermal stability of S/Se based thermoelectric materials using self-generated oxide films.

Authors :
Xiang, Siqi
Zhang, Dandan
Liang, Yihan
Ma, Xiaoguang
Zhang, Xinfang
Source :
Ceramics International. Oct2023, Vol. 49 Issue 19, p31325-31332. 8p.
Publication Year :
2023

Abstract

This study focuses on the thermal stability of Cu 1.8 S materials. During the ball milling process, metal powder is added to the milled Cu 1.8 S powder, and then the obtained powder is sintered using current assisted sintering to obtain dense blocks. The aim is to enable the added metal elements to spontaneously grow an oxide film on the surface of the material block at high temperature, achieving protection of the material matrix. The thermal stability of materials is evaluated by utilizing changes in room temperature phase composition before and after high-temperature heat treatment, changes in material electrical conductivity during high-temperature processes, and cyclic electrical transmission performance testing. By observing the surface oxide film state of the material after high-temperature treatment, the commonalities and differences in the effects of different element additions on the thermal stability of the material were analyzed. The effects of different metal elements on material hardness and electrical transmission performance were evaluated. It is found that adding metal powder can effectively improve the thermal stability of Cu 1.8 S, improve material hardness, and regulate the electrical transmission performance of the material. The characteristics of the oxide film formed by the spontaneous growth of metal elements and oxygen on the surface of the material substrate determine the effectiveness of the oxide film in protecting the material from high temperatures. The pure Cu 1.8 S bulk can only maintain stability at 300 oC, and the addition of Cr, Al, 316L, Fe, and Mn powder respectively increased the stable temperature of the material to 400, 400, 450, 450, 500 oC. Adding metal elements to the material matrix to grow an oxide film on the surface of the material to prevent high-temperature oxidation or decomposition is an effective way to improve the thermal stability of S/Se compounds. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
49
Issue :
19
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
169875966
Full Text :
https://doi.org/10.1016/j.ceramint.2023.07.080