Back to Search Start Over

Integrative proteomics highlight presynaptic alterations and c-Jun misactivation as convergent pathomechanisms in ALS.

Authors :
Aly, Amr
Laszlo, Zsofia I.
Rajkumar, Sandeep
Demir, Tugba
Hindley, Nicole
Lamont, Douglas J.
Lehmann, Johannes
Seidel, Mira
Sommer, Daniel
Franz-Wachtel, Mirita
Barletta, Francesca
Heumos, Simon
Czemmel, Stefan
Kabashi, Edor
Ludolph, Albert
Boeckers, Tobias M.
Henstridge, Christopher M.
Catanese, Alberto
Source :
Acta Neuropathologica. Sep2023, Vol. 146 Issue 3, p451-475. 25p.
Publication Year :
2023

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00016322
Volume :
146
Issue :
3
Database :
Academic Search Index
Journal :
Acta Neuropathologica
Publication Type :
Academic Journal
Accession number :
169849558
Full Text :
https://doi.org/10.1007/s00401-023-02611-y