Back to Search Start Over

Necessary condition for the L 2 boundedness of the Riesz transform on Heisenberg groups.

Authors :
DÄ„BROWSKI, DAMIAN
VILLA, MICHELE
Source :
Mathematical Proceedings of the Cambridge Philosophical Society. Sep2023, Vol. 175 Issue 2, p445-458. 14p.
Publication Year :
2023

Abstract

Let $\mu$ be a Radon measure on the n th Heisenberg group ${\mathbb{H}}^n$. In this note we prove that if the $(2n+1)$ -dimensional (Heisenberg) Riesz transform on ${\mathbb{H}}^n$ is $L^2(\mu)$ -bounded, and if $\mu(F)=0$ for all Borel sets with ${\text{dim}}_H(F)\leq 2$ , then $\mu$ must have $(2n+1)$ -polynomial growth. This is the Heisenberg counterpart of a result of Guy David from [ Dav91 ]. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*RADON
*BOREL sets

Details

Language :
English
ISSN :
03050041
Volume :
175
Issue :
2
Database :
Academic Search Index
Journal :
Mathematical Proceedings of the Cambridge Philosophical Society
Publication Type :
Academic Journal
Accession number :
169785852
Full Text :
https://doi.org/10.1017/S0305004123000245