Back to Search
Start Over
Necessary condition for the L 2 boundedness of the Riesz transform on Heisenberg groups.
- Source :
-
Mathematical Proceedings of the Cambridge Philosophical Society . Sep2023, Vol. 175 Issue 2, p445-458. 14p. - Publication Year :
- 2023
-
Abstract
- Let $\mu$ be a Radon measure on the n th Heisenberg group ${\mathbb{H}}^n$. In this note we prove that if the $(2n+1)$ -dimensional (Heisenberg) Riesz transform on ${\mathbb{H}}^n$ is $L^2(\mu)$ -bounded, and if $\mu(F)=0$ for all Borel sets with ${\text{dim}}_H(F)\leq 2$ , then $\mu$ must have $(2n+1)$ -polynomial growth. This is the Heisenberg counterpart of a result of Guy David from [ Dav91 ]. [ABSTRACT FROM AUTHOR]
- Subjects :
- *RADON
*BOREL sets
Subjects
Details
- Language :
- English
- ISSN :
- 03050041
- Volume :
- 175
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Mathematical Proceedings of the Cambridge Philosophical Society
- Publication Type :
- Academic Journal
- Accession number :
- 169785852
- Full Text :
- https://doi.org/10.1017/S0305004123000245