Back to Search Start Over

Trivial gain of downscaling in future projections of higher trophic levels in the Nordic and Barents Seas.

Authors :
Nilsen, Ina
Fransner, Filippa
Olsen, Are
Tjiputra, Jerry
Hordoir, Robinson
Hansen, Cecilie
Source :
Fisheries Oceanography. Sep2023, Vol. 32 Issue 5, p479-493. 15p.
Publication Year :
2023

Abstract

Downscaling physical forcing from global climate models is both time consuming and labor demanding and can delay or limit the physical forcing available for regional marine ecosystem modelers. Earlier studies have shown that downscaled physics is necessary for capturing the dynamics of primary production and lower trophic levels; however, it is not clear how higher trophic levels respond to the coarse resolution physics of global models. Here, we apply the Nordic and Barents Seas Atlantis ecosystem model (NoBa) to study the consequences of using physical forcing from global climate models versus using that from regional models. The study is therefore (i) a comparison between a regional model and its driving global model to investigate the extent to which a global climate model can be used for regional ecosystem predictions and (ii) a study of the impact of future climate change in the Nordic and Barents Seas. We found that few higher trophic level species were affected by using forcing from a global versus a regional model, and there was a general agreement in future biomass trends and distribution patterns. However, the slight difference in temperature between the models dramatically impacted Northeast Arctic cod (Gadus morhua), which highlights how species projection uncertainty could arise from poor physical representation of the physical forcing, in addition to uncertainty in the ecosystem model parameterization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10546006
Volume :
32
Issue :
5
Database :
Academic Search Index
Journal :
Fisheries Oceanography
Publication Type :
Academic Journal
Accession number :
169773114
Full Text :
https://doi.org/10.1111/fog.12641