Back to Search
Start Over
Woodland wildfire enables fungal colonization of encroaching Douglas‐fir.
- Source :
-
Functional Ecology . Aug2023, Vol. 37 Issue 8, p2181-2193. 13p. - Publication Year :
- 2023
-
Abstract
- Self‐reinforcing differences in fire frequency help closed‐canopy forests, which resist fire, and open woodlands, which naturally burn often, to co‐occur stably at landscape scales. Forest tree seedlings, which could otherwise encroach and overgrow woodlands, are killed by regular fire, yet fire has other effects that may also influence these feedbacks. In particular, many forest trees require symbiotic ectomycorrhizal fungi in order to establish. By restructuring soil fungal communities, fire might affect the availability of symbionts or the potential for symbiont sharing between encroaching trees and woodland vegetation.To investigate this possibility, we performed a soil bioassay experiment using inoculum from burned and unburned oak woodlands and Douglas‐fir forests. We examined how fire, ecosystem type, and neighboring heterospecific seedlings affect fungal root community assembly of Douglas‐firs and oaks. We asked whether heterospecific seedlings facilitated fungal colonization of seedling roots in non‐native soil, and if so, whether fire influenced this interaction.External fungal colonization of oak roots was more influenced by fire and ecosystem type than by the presence of a Douglas‐fir, and oaks increased the likelihood that Douglas‐fir roots would be colonized by fungi in oak woodland soil. Yet, fire increased colonization of Douglas‐fir in oak soil, diminishing the otherwise crucial role played by oak facilitation. Fire also strengthened the positive effect of Douglas‐firs on oak root‐associated fungal diversity in Douglas‐fir forest soil.Prior work shows that fire supports woodland ecosystems by stemming recruitment of encroaching seedlings. Here, we find evidence that it may contrastingly reduce fungal limitation of invasive seedling growth and establishment, otherwise relieved only by facilitation. Future work can investigate how these opposing effects might contribute to the net impact of changes in fire regime on landcover stability. Read the free Plain Language Summary for this article on the Journal blog. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02698463
- Volume :
- 37
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- Functional Ecology
- Publication Type :
- Academic Journal
- Accession number :
- 169726382
- Full Text :
- https://doi.org/10.1111/1365-2435.14382