Back to Search
Start Over
A MOR Antagonist with High Potency and Antagonist Efficacy among Diastereomeric C9-Alkyl-Substituted N -Phenethyl-5-(3-hydroxy)phenylmorphans.
- Source :
-
Molecules . Jul2023, Vol. 28 Issue 14, p5411. 20p. - Publication Year :
- 2023
-
Abstract
- The 5-(3-hydroxy)phenylmorphan structural class of compounds are unlike the classical morphinans, 4,5-epoxymorphinans, and 6,7-benzomorphans, in that they have an equatorially oriented aromatic ring rather than the axial orientation of that ring found in the classical opioids. This modified and simplified opioid-like structure has been shown to retain antinociceptive activity, depending on its stereochemistry and substituents, and some of them have been found to be much more potent than morphine. A simple C9-hydroxy-5-(3-hydroxy)phenylmorphan enantiomer was found to be about 500 times more potent than morphine in vivo. We have previously examined C9-alkenyl and hydroxyalkyl substituents in the N-phenethyl-5-(3-hydroxy)phenylmorphan class of compounds. Comparable C9-alkyl (methyl through butyl) substituents, with their sets of diastereomers, have not been explored. All these compounds have now been synthesized to determine the effect chain-length and stereochemistry at the C9 position in the molecule might have on their interaction with opioid receptors. We now report the synthesis and in vitro activity of 16 compounds, the C9-methyl, ethyl, propyl, and butyl diastereomers, using the inhibition of forskolin-induced cAMP accumulation assay. Several potent (sub-nanomolar and nanomolar) MOR compounds were found to be selective agonists with varying efficacy. Of greatest interest, a selective MOR antagonist was discovered; it did not display any DOR or KOR agonist activity in vitro, was three times more potent than naltrexone, and was found to antagonize the EC90 of fentanyl at MOR to a greater extent than naltrexone. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 28
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- 169330663
- Full Text :
- https://doi.org/10.3390/molecules28145411