Back to Search Start Over

Seed Treatment with Sodium Nitroprusside Ensures a Long-Term Physiological and Protective Effect on Wheat under Salinity.

Authors :
Maslennikova, Dilara
Knyazeva, Inna
Vershinina, Oksana
Titenkov, Andrey
Lastochkina, Oksana
Source :
Life (2075-1729). Jul2023, Vol. 13 Issue 7, p1499. 17p.
Publication Year :
2023

Abstract

Although salinity inhibits plant growth, the use of a nitric oxide (NO) gasotransmitter can reduce its negative effects. In this study, the influence of 200 μM sodium nitroprusside (SNP) (donor of NO) on wheat plants (Triticum aestivum L., cv. Salavat Yulaev) in conditions of salinization (100 mM NaCl) was analyzed in pot experiments. Seed priming regulated the level of endogenous NO in normal and salinity conditions throughout the entire experiment (30 and 60 days). Salinity led to the strong accumulation of NO and H2O2, which is negative for plants, and significantly reduced leaf area and photosynthetic pigments (chlorophyll a and b and carotenoids). In addition, stress caused a drop in the content of reduced glutathione (GSH) and ascorbic acid (ASA), an accumulation of oxidized glutathione (GSSG), and significantly activated glutathione reductase (GR), ascorbate peroxidase (APX), and lipid peroxidation (LPO) in wheat leaves. SNP treatment significantly attenuated the negative effects of salinity on leaf area and photosynthetic pigments. An important indicator of reducing the damaging effect of salinity on treated plants is the stabilization of the content of GSH and ASA throughout the experiment (60 days). This condition has been associated with long-term modulation of GR and APX activity. Such an effect of 200 μM SNP may be related to its ability to reduce stress-induced accumulation of NO. Additional accumulation of proline also mitigated the negative effect of salinity on plants, and this also evidenced decreased LPO and H2O2 in them. For the first time, in natural growing conditions (small-scale field experiments), it was found that pre-sowing seed treatment with 200 μM SNP led to an improvement in the main yield indicators and an increase in the content of essential amino acids in wheat grains. Thus, SNP treatment can be used as an effective approach for prolonged protection of wheat plants under salinity and to improve grain yield and its quality. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20751729
Volume :
13
Issue :
7
Database :
Academic Search Index
Journal :
Life (2075-1729)
Publication Type :
Academic Journal
Accession number :
169325708
Full Text :
https://doi.org/10.3390/life13071499