Back to Search Start Over

Prediction of lymphoma response to CAR T cells by deep learning-based image analysis.

Authors :
Tong, Yubing
Udupa, Jayaram K.
Chong, Emeline
Winchell, Nicole
Sun, Changjian
Zou, Yongning
Schuster, Stephen J.
Torigian, Drew A.
Source :
PLoS ONE. 7/21/2023, Vol. 18 Issue 7, p1-11. 11p.
Publication Year :
2023

Abstract

Clinical prognostic scoring systems have limited utility for predicting treatment outcomes in lymphomas. We therefore tested the feasibility of a deep-learning (DL)-based image analysis methodology on pre-treatment diagnostic computed tomography (dCT), low-dose CT (lCT), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images and rule-based reasoning to predict treatment response to chimeric antigen receptor (CAR) T-cell therapy in B-cell lymphomas. Pre-treatment images of 770 lymph node lesions from 39 adult patients with B-cell lymphomas treated with CD19-directed CAR T-cells were analyzed. Transfer learning using a pre-trained neural network model, then retrained for a specific task, was used to predict lesion-level treatment responses from separate dCT, lCT, and FDG-PET images. Patient-level response analysis was performed by applying rule-based reasoning to lesion-level prediction results. Patient-level response prediction was also compared to prediction based on the international prognostic index (IPI) for diffuse large B-cell lymphoma. The average accuracy of lesion-level response prediction based on single whole dCT slice-based input was 0.82+0.05 with sensitivity 0.87+0.07, specificity 0.77+0.12, and AUC 0.91+0.03. Patient-level response prediction from dCT, using the "Majority 60%" rule, had accuracy 0.81, sensitivity 0.75, and specificity 0.88 using 12-month post-treatment patient response as the reference standard and outperformed response prediction based on IPI risk factors (accuracy 0.54, sensitivity 0.38, and specificity 0.61 (p = 0.046)). Prediction of treatment outcome in B-cell lymphomas from pre-treatment medical images using DL-based image analysis and rule-based reasoning is feasible. This approach can potentially provide clinically useful prognostic information for decision-making in advance of initiating CAR T-cell therapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
18
Issue :
7
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
165471166
Full Text :
https://doi.org/10.1371/journal.pone.0282573