Back to Search
Start Over
Finite-dimensional Nichols algebras over the Suzuki algebras I: simple Yetter-Drinfeld modules of AµλN 2n.
- Source :
-
Bulletin of the Belgian Mathematical Society - Simon Stevin . Dec2022, Vol. 29 Issue 2, p207-233. 27p. - Publication Year :
- 2022
-
Abstract
- The Suzuki algebra AµλNn, introduced by Suzuki Satoshi in 1998, is a class of cosemisimple Hopf algebras. It is not categorically Morita-equivalent to a group algebra in general. In this paper, the author gives a complete set of simple Yetter-Drinfeld modules over the Suzuki algebra AµλN2n and investigates the Nichols algebras over those simple Yetter-Drinfeld modules. The involved finite dimensional Nichols algebras of diagonal type are of Cartan type A1, A1 × A1, A2, A2 × A2, Super type A2(q; I2) and the Nichols algebra ufo(8). There are 64, 4m and m² -dimensional Nichols algebras of non-diagonal type over AµλN2n . The 64-dimensional Nichols algebras are of dihedral rack type D4. The 4m and m2 -dimensional Nichols algebras B(Vabe) discovered first by Andruskiewitsch and Giraldi can be realized in the category of Yetter-Drinfeld modules over AµλNn. Using a result of Masuoka, we prove that dim B(Vabe) = ∞ under the condition b² = (ae)−1, b ∈ Gm for m ≥ 5. [ABSTRACT FROM AUTHOR]
- Subjects :
- *GROUP algebras
*ALGEBRA
*HOPF algebras
*LIE superalgebras
Subjects
Details
- Language :
- English
- ISSN :
- 13701444
- Volume :
- 29
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Bulletin of the Belgian Mathematical Society - Simon Stevin
- Publication Type :
- Academic Journal
- Accession number :
- 164931215
- Full Text :
- https://doi.org/10.36045/j.bbms.211101