Back to Search Start Over

A Reinforcement Learning Approach for Ensemble Machine Learning Models in Peak Electricity Forecasting.

Authors :
Pannakkong, Warut
Vinh, Vu Thanh
Tuyen, Nguyen Ngoc Minh
Buddhakulsomsiri, Jirachai
Source :
Energies (19961073). Jul2023, Vol. 16 Issue 13, p5099. 20p.
Publication Year :
2023

Abstract

Electricity peak load forecasting plays an important role in electricity generation capacity planning to ensure reliable power supplies. To achieve high forecast accuracy, multiple machine learning models have been implemented to forecast the monthly peak load in Thailand over the past few years, yielding promising results. One approach to further improve forecast accuracy is to effectively select the most accurate forecast value for each period from among the forecast values generated by these models. This article presents a novel reinforcement learning approach using the double deep Q-network (Double DQN), which acts as a model selector from a pool of available models. The monthly electricity peak load data of Thailand from 2004 to 2017 are used to demonstrate the effectiveness of the proposed method. A hyperparameter tuning methodology using a fractional factorial design is implemented to significantly reduce the number of required experimental runs. The results indicate that the proposed selection model using Double DQN outperforms all tested individual machine learning models in terms of mean square error. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
16
Issue :
13
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
164921981
Full Text :
https://doi.org/10.3390/en16135099