Back to Search Start Over

Accurately Detecting Trace‐Level Infectious Agents by an Electro‐Enhanced Graphene Transistor.

Authors :
Dai, Changhao
Yang, Yi
Xiong, Huiwen
Wang, Xuejun
Gou, Jian
Li, Pintao
Wu, Yungen
Chen, Yiheng
Kong, Derong
Yang, Yuetong
Ji, Daizong
Kong, Jilie
Wee, Andrew Thye Shen
Liu, Yunqi
Guo, Mingquan
Wei, Dacheng
Source :
Advanced Functional Materials. 7/11/2023, Vol. 33 Issue 28, p1-9. 9p.
Publication Year :
2023

Abstract

For epidemic prevention and control, molecular diagnostic techniques such as field‐effect transistor (FET) biosensors is developed for rapid screening of infectious agents, including Mycobacterium tuberculosis, SARS‐CoV‐2, rhinovirus, and others. They obtain results within a few minutes but exhibit diminished sensitivity (<75%) in unprocessed biological samples due to insufficient recognition of low‐abundance analytes. Here, an electro‐enhanced strategy is developed for the precise detection of trace‐level infectious agents by liquid‐gate graphene field‐effect transistors (LG‐GFETs). The applied gate bias preconcentrates analytes electrostatically at the sensing interface, contributing to a 10‐fold signal enhancement and a limit of detection down to 5 × 10−16 g mL−1 MPT64 protein in serum. Of 402 participants, sensitivity in tuberculosis, COVID‐19 and human rhinovirus assays reached 97.3% (181 of 186), and specificity is 98.6% (213 of 216) with a response time of <60 s. This study solves a long‐standing dilemma that response speed and result accuracy of molecular diagnostics undergo trade‐offs in unprocessed biological samples, holding unique promise in high‐quality and population‐wide screening of infectious diseases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
33
Issue :
28
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
164876182
Full Text :
https://doi.org/10.1002/adfm.202300151