Back to Search Start Over

On evaporation dynamics of an acoustically levitated multicomponent droplet: Evaporation-triggered phase transition and freezing.

Authors :
Zeng, Hao
Wakata, Yuki
Chao, Xing
Li, Mingbo
Sun, Chao
Source :
Journal of Colloid & Interface Science. Oct2023, Vol. 648, p736-744. 9p.
Publication Year :
2023

Abstract

Multi-component droplet evaporation has received significant attention in recent years due to the broad range of applications such as material science, environmental monitoring, and pharmaceuticals. The selective evaporation induced by the different physicochemical properties of components is expected to influence the concentration distributions and the separation of mixtures, thereby leading to rich interfacial phenomena and phase interactions. A ternary mixture system containing hexadecane, ethanol, and diethyl ether is investigated in this study. The diethyl ether exhibits both surfactant-like and co-solvent properties. Systematic experiments were performed using acoustic levitation technique to achieve a contact-less evaporation condition. The evaporation dynamics and temperature information are acquired in the experiments, using high-speed photography and infrared thermography technologies. Three distinct stages, namely, 'Ouzo state', 'Janus state', and 'Encapsulating state', are identified for the evaporating ternary droplet in acoustic levitation. A self-sustaining periodic freezing & melting evaporation mode is reported. A theoretical model is developed to characterize the multi-stage evaporating behaviors. We demonstrate the capability to tune the evaporating behaviors by varying the initial droplet composition. This work provides a deeper understanding of the interfacial dynamics and phase transitions involved in multi-component droplets and proposes novel strategies for the design and control of droplet-based systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
648
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
164866928
Full Text :
https://doi.org/10.1016/j.jcis.2023.06.012