Back to Search Start Over

Dynamic properties and the roton mode attenuation in liquid 3He: ab initio study within the self-consistent method of moments.

Authors :
Filinov, A. V.
Ara, J.
Tkachenko, I. M.
Source :
Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences. 8/21/2023, Vol. 381 Issue 2253, p1-31. 31p.
Publication Year :
2023

Abstract

The dynamic structure factor and the eigenmodes of density fluctuations in liquid 3He are studied using a novel non-perturbative approach. This new version of the self-consistent method of moments invokes up to nine sum rules and other exact relations, the two-parameter Shannon information entropy maximization procedure, and the ab initio path integral Monte Carlo simulations which provide necessary reliable input information on the system static properties. Detailed analysis is performed of the collective excitations dispersion relations, the modes' decrements and the static structure factor of 3He at the saturated vapour pressure. The results are compared to available experimental data by Albergamo et al. (Albergamo et al. 2007 Phys. Rev. Lett.99, 205301. (doi:10.1103/PhysRevLett.99.205301)) and Fåk et al. (Fåk et al. 1994 J. Low Temp. Phys.97, 445–487. (doi:10.1007/BF00754303)). The theory reveals a clear signature of the roton-like feature in the particle-hole segment of the excitation spectrum with a significant reduction of the roton decrement in the wavenumber range 1.3 Å−1≤q≤2.2 Å−1. The observed roton mode remains a well-defined collective mode even in the particle-hole band, where it is strongly damped. The existence of the roton-like mode in the bulk liquid 3He is confirmed like in other quantum fluids. The phonon branch of the spectrum is in a reasonable agreement with the same experimental data. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1364503X
Volume :
381
Issue :
2253
Database :
Academic Search Index
Journal :
Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
Publication Type :
Academic Journal
Accession number :
164654885
Full Text :
https://doi.org/10.1098/rsta.2022.0324