Back to Search Start Over

FastSpline: Automatic Generation of Interpolants for Lattice Samplings.

Authors :
Horacsek, Joshua
Alim, Usman
Source :
ACM Transactions on Mathematical Software. Jun2023, Vol. 49 Issue 2, p1-35. 35p.
Publication Year :
2023

Abstract

Interpolation is a foundational concept in scientific computing and is at the heart of many scientific visualization techniques. There is usually a tradeoff between the approximation capabilities of an interpolation scheme and its evaluation efficiency. For many applications, it is important for a user to navigate their data in real time. In practice, evaluation efficiency outweighs any incremental improvements in reconstruction fidelity. We first analyze, from a general standpoint, the use of compact piece-wise polynomial basis functions to efficiently interpolate data that is sampled on a lattice. We then detail our automatic code-generation framework on both CPU and GPU architectures. Specifically, we propose a general framework that can produce a fast evaluation scheme by analyzing the algebro-geometric structure of the convolution sum for a given lattice and basis function combination. We demonstrate the utility and generality of our framework by providing fast implementations of various box splines on the Body Centered and Face Centered Cubic lattices, as well as some non-separable box splines on the Cartesian lattice. We also provide fast implementations for certain Voronoi-splines that have not yet appeared in the literature. Finally, we demonstrate that this framework may also be used for non-Cartesian lattices in 4D. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00983500
Volume :
49
Issue :
2
Database :
Academic Search Index
Journal :
ACM Transactions on Mathematical Software
Publication Type :
Academic Journal
Accession number :
164588590
Full Text :
https://doi.org/10.1145/3577194