Back to Search Start Over

Green, General and Low‐cost Synthesis of Porous Organic Polymers in Sub‐kilogram Scale for Catalysis and CO2 Capture.

Authors :
Luo, Dan
Shi, Tianhui
Li, Qiao‐Hong
Xu, Qinqin
Strømme, Maria
Zhang, Qian‐Feng
Xu, Chao
Source :
Angewandte Chemie International Edition. 7/3/2023, Vol. 62 Issue 27, p1-8. 8p.
Publication Year :
2023

Abstract

Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obstacles for large‐scale production. Herein, we report the synthesis of imine and aminal‐linked POPs using inexpensive diamine and dialdehyde monomers in green solvents. Theoretical calculations and control experiments show that using meta‐diamines is crucial for forming aminal linkages and branching porous networks from [2+2] polycondensation reactions. The method demonstrates good generality in that 6 POPs were successfully synthesized from different monomers. Additionally, we scaled up the synthesis in ethanol at room temperature, resulting in the production of POPs in sub‐kilogram quantities at a relatively low cost. Proof‐of‐concept studies demonstrate that the POPs can be used as high‐performance sorbents for CO2 separation and as porous substrates for efficient heterogeneous catalysis. This method provides an environmentally friendly and cost‐effective approach for large‐scale synthesis of various POPs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
62
Issue :
27
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
164586719
Full Text :
https://doi.org/10.1002/anie.202305225