Back to Search Start Over

Basis-set correction based on density-functional theory: Linear-response formalism for excited-state energies.

Authors :
Traore, Diata
Giner, Emmanuel
Toulouse, Julien
Source :
Journal of Chemical Physics. 6/21/2023, Vol. 158 Issue 23, p1-9. 9p.
Publication Year :
2023

Abstract

The basis-set correction method based on density-functional theory consists in correcting the energy calculated by a wave-function method with a given basis set by a density functional. This basis-set correction density functional incorporates the short-range electron correlation effects missing in the basis set. This results in accelerated basis convergences of ground-state energies to the complete-basis-set limit. In this work, we extend the basis-set correction method to a linear-response formalism for calculating excited-state energies. We give the general linear-response equations as well as the more specific equations for configuration-interaction wave functions. As a proof of concept, we apply this approach to the calculations of excited-state energies in a one-dimensional two-electron model system with harmonic potential and a Dirac-delta electron–electron interaction. The results obtained with full-configuration-interaction wave functions expanded in a basis of Hermite functions and a local-density-approximation basis-set correction functional show that the present approach does not help in accelerating the basis convergence of excitation energies. However, we show that it significantly accelerates basis convergences of excited-state total energies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
158
Issue :
23
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
164434909
Full Text :
https://doi.org/10.1063/5.0156317