Back to Search Start Over

Power analysis for cluster randomized trials with continuous coprimary endpoints.

Authors :
Yang, Siyun
Moerbeek, Mirjam
Taljaard, Monica
Li, Fan
Source :
Biometrics. Jun2023, Vol. 79 Issue 2, p1293-1305. 13p.
Publication Year :
2023

Abstract

Pragmatic trials evaluating health care interventions often adopt cluster randomization due to scientific or logistical considerations. Systematic reviews have shown that coprimary endpoints are not uncommon in pragmatic trials but are seldom recognized in sample size or power calculations. While methods for power analysis based on K (K≥2$K\ge 2$) binary coprimary endpoints are available for cluster randomized trials (CRTs), to our knowledge, methods for continuous coprimary endpoints are not yet available. Assuming a multivariate linear mixed model (MLMM) that accounts for multiple types of intraclass correlation coefficients among the observations in each cluster, we derive the closed‐form joint distribution of K treatment effect estimators to facilitate sample size and power determination with different types of null hypotheses under equal cluster sizes. We characterize the relationship between the power of each test and different types of correlation parameters. We further relax the equal cluster size assumption and approximate the joint distribution of the K treatment effect estimators through the mean and coefficient of variation of cluster sizes. Our simulation studies with a finite number of clusters indicate that the predicted power by our method agrees well with the empirical power, when the parameters in the MLMM are estimated via the expectation‐maximization algorithm. An application to a real CRT is presented to illustrate the proposed method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0006341X
Volume :
79
Issue :
2
Database :
Academic Search Index
Journal :
Biometrics
Publication Type :
Academic Journal
Accession number :
164420913
Full Text :
https://doi.org/10.1111/biom.13692