Back to Search Start Over

Silicon spin qubits from laboratory to industry.

Authors :
De Michielis, Marco
Ferraro, Elena
Prati, Enrico
Hutin, Louis
Bertrand, Benoit
Charbon, Edoardo
Ibberson, David J
Fernando Gonzalez-Zalba, Miguel
Source :
Journal of Physics D: Applied Physics. 9/7/2023, Vol. 56 Issue 36, p1-26. 26p.
Publication Year :
2023

Abstract

Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution if not sufficiently limited and corrected by quantum error correction codes thus avoiding quantum algorithm failures. In particular millions of highly-coherent qubits arranged in a two-dimensional array are required to implement the surface code, one of the most promising codes for quantum error correction. One of the most attractive technologies to fabricate such large number of almost identical high-quality devices is the well known metal-oxide-semiconductor technology. Silicon quantum processor manufacturing can leverage the technological developments achieved in the last 50 years in the semiconductor industry. Here, we review modeling, fabrication aspects and experimental figures of merit of qubits defined in the spin degree of freedom of charge carriers confined in quantum dots and donors in silicon devices along with classical electronics innovations for qubit control and readout. Furthermore, we discuss potential applications of the technology and finally we review the role of start-ups and companies in the silicon-based QC era. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223727
Volume :
56
Issue :
36
Database :
Academic Search Index
Journal :
Journal of Physics D: Applied Physics
Publication Type :
Academic Journal
Accession number :
164307677
Full Text :
https://doi.org/10.1088/1361-6463/acd8c7