Back to Search Start Over

Removal of Active Region Inflows Reveals a Weak Solar Cycle Scale Trend in the Near-surface Meridional Flow.

Authors :
Mahajan, Sushant S.
Sun, Xudong
Zhao, Junwei
Source :
Astrophysical Journal. 6/10/2023, Vol. 950 Issue 1, p1-10. 10p.
Publication Year :
2023

Abstract

Using time–distance local helioseismology flow maps within 1 Mm of the solar photosphere, we detect inflows toward activity belts that contribute to solar-cycle scale variations in the near-surface meridional flow. These inflows stretch out as far as 30° away from the active region centroids. If active region neighborhoods are excluded, the solar-cycle-scale variation in the background meridional flow diminishes to below 2 m s−1, but still shows systematic variations in the absence of active regions between sunspot cycles 24 and 25. We therefore propose that the near-surface meridional flow is a three-component flow made up of a constant baseline flow profile that can be derived from quiet-Sun regions, variations due to inflows around active regions, and solar-cycle-scale variation of about 2 m s−1. Torsional oscillation, on the other hand, is found to be a global phenomenon, i.e., exclusion of active region neighborhoods does not significantly affect its magnitude or phase. This nonvariation in torsional oscillation with distance away from active regions and the three-component breakdown of the near-surface meridional flow serve as vital constraints for solar dynamo models and surface flux-transport simulations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0004637X
Volume :
950
Issue :
1
Database :
Academic Search Index
Journal :
Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
164307622
Full Text :
https://doi.org/10.3847/1538-4357/acc839