Back to Search Start Over

Spatio-temporal graph mixformer for traffic forecasting.

Authors :
Lablack, Mourad
Shen, Yanming
Source :
Expert Systems with Applications. Oct2023, Vol. 228, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

Traffic forecasting is of great importance for intelligent transportation systems (ITS). Because of the intricacy implied in traffic behavior and the non-Euclidean nature of traffic data, it is challenging to give an accurate traffic prediction. Despite that previous studies considered the relationship between different nodes, the majority have relied on a static representation and failed to capture the dynamic node interactions over time. Additionally, prior studies employed RNN-based models to capture the temporal dependency. While RNNs are a popular choice for forecasting problems, they tend to be memory hungry and slow to train. Furthermore, recent studies start utilizing similarity algorithms to better express the implication of a node over the other. However, to our knowledge, none have explored the contribution of node i 's past, over the future state of node j. In this paper, we propose a Spatio-Temporal Graph Mixformer (STGM) network, a highly optimized model with low memory footprint. We address the aforementioned limits by utilizing a novel attention mechanism to capture the correlation between temporal and spatial dependencies. Specifically, we use convolution layers with a variable fields of view for each head to capture long–short term temporal dependency. Additionally, we train an estimator model that express the contribution of a node over the desired prediction. The estimation is fed alongside a distance matrix to the attention mechanism. Meanwhile, we use a gated mechanism and a mixer layer to further select and incorporate the different perspectives. Extensive experiments show that the proposed model enjoys a performance gain compared to the baselines while maintaining the lowest parameter counts. • A transformer-based architecture for traffic forecasting. • An adaptive adjacency matrix generation based on attention and similarity learning. • Temporal convolution with variable fields of view for lower parameter count. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09574174
Volume :
228
Database :
Academic Search Index
Journal :
Expert Systems with Applications
Publication Type :
Academic Journal
Accession number :
164285458
Full Text :
https://doi.org/10.1016/j.eswa.2023.120281