Back to Search Start Over

Systematic approaches to C-lignin engineering in Medicago truncatula.

Authors :
Ha, Chan Man
Escamilla-Trevino, Luis
Zhuo, Chunliu
Pu, Yunqiao
Bryant, Nathan
Ragauskas, Arthur J.
Xiao, Xirong
Li, Ying
Chen, Fang
Dixon, Richard A.
Source :
Biotechnology for Biofuels & Bioproducts. 6/12/2023, Vol. 16 Issue 1, p1-17. 17p.
Publication Year :
2023

Abstract

Background: C-lignin is a homopolymer of caffeyl alcohol present in the seed coats of a variety of plant species including vanilla orchid, various cacti, and the ornamental plant Cleome hassleriana. Because of its unique chemical and physical properties, there is considerable interest in engineering C-lignin into the cell walls of bioenergy crops as a high-value co-product of bioprocessing. We have used information from a transcriptomic analysis of developing C. hassleriana seed coats to suggest strategies for engineering C-lignin in a heterologous system, using hairy roots of the model legume Medicago truncatula. Results: We systematically tested strategies for C-lignin engineering using a combination of gene overexpression and RNAi-mediated knockdown in the caffeic acid/5-hydroxy coniferaldehyde 3/5-O-methyltransferase (comt) mutant background, monitoring the outcomes by analysis of lignin composition and profiling of monolignol pathway metabolites. In all cases, C-lignin accumulation required strong down-regulation of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) paired with loss of function of COMT. Overexpression of the Selaginella moellendorffii ferulate 5-hydroxylase (SmF5H) gene in comt mutant hairy roots resulted in lines that unexpectedly accumulated high levels of S-lignin. Conclusion: C-Lignin accumulation of up to 15% of total lignin in lines with the greatest reduction in CCoAOMT expression required the strong down-regulation of both COMT and CCoAOMT, but did not require expression of a heterologous laccase, cinnamyl alcohol dehydrogenase (CAD) or cinnamoyl CoA reductase (CCR) with preference for 3,4-dihydroxy-substituted substrates in M. truncatula hairy roots. Cell wall fractionation studies suggested that the engineered C-units are not present in a heteropolymer with the bulk of the G-lignin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
27313654
Volume :
16
Issue :
1
Database :
Academic Search Index
Journal :
Biotechnology for Biofuels & Bioproducts
Publication Type :
Academic Journal
Accession number :
164263848
Full Text :
https://doi.org/10.1186/s13068-023-02339-7