Back to Search Start Over

MV-CDN: Multi-Visual Collaborative Deep Network for Change Detection of Double-Temporal Hyperspectral Images.

Authors :
Li, Jinlong
Yuan, Xiaochen
Li, Jinfeng
Huang, Guoheng
Feng, Li
Zhang, Jing
Source :
Remote Sensing. Jun2023, Vol. 15 Issue 11, p2834. 20p.
Publication Year :
2023

Abstract

Since individual neural networks have limited deep expressiveness and effectiveness, many learning frameworks face difficulties in the availability and balance of sample selection. As a result, in change detection, it is difficult to upgrade the hit rate of a high-performance model on both positive and negative pixels. Therefore, supposing that the sacrificed components coincide perfectly with the important evaluation objectives, such as positives, it would lose more than gain. To address this issue, in this paper, we propose a multi-visual collaborative deep network (MV-CDN) served by three collaborative network members that consists of three subdivision approaches, the CDN with one collaborator (CDN-C), CDN with two collaborators (CDN-2C), and CDN with three collaborators (CDN-3C). The purpose of the collaborator is to re-evaluate the feature elements in the network transmission, and thus to translate the group-thinking into a more robust field of vision. We use three sets of public double-temporal hyperspectral images taken by the AVIRIS and HYPERION sensors to show the feasibility of the proposed schema. The comparison results have confirmed that our proposed schema outperforms the existing state-of-the-art algorithms on the three tested datasets, which demonstrates the broad adaptability and progressiveness of the proposal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
11
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164213171
Full Text :
https://doi.org/10.3390/rs15112834