Back to Search Start Over

Sulforaphane Attenuates Neutrophil ROS Production, MPO Degranulation and Phagocytosis, but Does Not Affect NET Formation Ex Vivo and In Vitro.

Authors :
Wakasugi-Onogi, Shiori
Ma, Sihui
Ruhee, Ruheea Taskin
Tong, Yishan
Seki, Yasuhiro
Suzuki, Katsuhiko
Source :
International Journal of Molecular Sciences. May2023, Vol. 24 Issue 10, p8479. 14p.
Publication Year :
2023

Abstract

Sulforaphane has several effects on the human body, including anti-inflammation, antioxidation, antimicrobial and anti-obesity effects. In this study, we examined the effect of sulforaphane on several neutrophil functions: reactive oxygen species (ROS) production, degranulation, phagocytosis, and neutrophil extracellular trap (NET) formation. We also examined the direct antioxidant effect of sulforaphane. First, we measured neutrophil ROS production induced by zymosan in whole blood in the presence of 0 to 560 µM sulforaphane. Second, we examined the direct antioxidant activity of sulforaphane using a HOCl removal test. In addition, inflammation-related proteins, including an azurophilic granule component, were measured by collecting supernatants following ROS measurements. Finally, neutrophils were isolated from blood, and phagocytosis and NET formation were measured. Sulforaphane reduced neutrophil ROS production in a concentration-dependent manner. The ability of sulforaphane to remove HOCl is stronger than that of ascorbic acid. Sulforaphane at 280 µM significantly reduced the release of myeloperoxidase from azurophilic granules, as well as that of the inflammatory cytokines TNF-α and IL-6. Sulforaphane also suppressed phagocytosis but did not affect NET formation. These results suggest that sulforaphane attenuates neutrophil ROS production, degranulation, and phagocytosis, but does not affect NET formation. Moreover, sulforaphane directly removes ROS, including HOCl. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
10
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
163966144
Full Text :
https://doi.org/10.3390/ijms24108479