Back to Search Start Over

Ball-milling synthesized Bi2VO5.5 for piezo-photocatalytic assessment.

Authors :
Kumar, Manish
Vaish, Rahul
Kebaili, Imen
Boukhris, Imed
Kwang Benno Park, Hyeong
Hwan Joo, Yun
Hyun Sung, Tae
Kumar, Anuruddh
Source :
Scientific Reports. 5/20/2023, Vol. 13 Issue 1, p1-15. 15p.
Publication Year :
2023

Abstract

The mechanochemical ball milling followed by heating at 650 °C for 5 h successfully produced the single-phase Bi2VO5.5 powder. Catalytic activity for methylene blue dye degradation was investigated. Raman spectroscopy and X-ray diffraction were used to confirm the phase formation. The sample's charge carrier transportation behavior was ascertained using time-dependent photocurrent analysis. The piezo-photocatalysis experiment yielded a 63% degradation efficiency for the ball-milled Bi2VO5.5 sample. The pseudo-first-order kinetics of the piezo-photocatalytic dye degradation are discerned, and the significant k value of 0.00529 min−1 is achieved. The scavenger test declares the h+ radical is the predominant active species during the piezo-photocatalysis experiment. Vigna radiata seeds were used in a phytotoxicity test to evaluate the germination index. The mechanochemical activation method facilitates reactions by lowering reaction temperature and time. The effect of improved piezo-photocatalytic efficiency on the ball-milled Bi2VO5.5 powder is an unexplored area, and we have attempted to investigate it. Here, ball-milled Bi2VO5.5 powder achieved improved dye degradation performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
163827331
Full Text :
https://doi.org/10.1038/s41598-023-33658-2