Back to Search Start Over

Hot Ion Mode in the Globus-M2 Spherical Tokamak.

Authors :
Kurskiev, G. S.
Sakharov, N. V.
Gusev, V. K.
Minaev, V. B.
Miroshnikov, I. V.
Petrov, Yu. V.
Telnova, A. Yu.
Bakharev, N. N.
Kiselev, E. O.
Zhiltsov, N. S.
Shchegolev, P. B.
Balachenkov, I. M.
Varfolomeev, V. I.
Voronin, A. V.
Goryainov, V. Yu.
Dyachenko, V. V.
Zhilin, E. G.
Iliasova, M. V.
Kavin, A. A.
Konovalov, A. N.
Source :
Plasma Physics Reports. Apr2023, Vol. 49 Issue 4, p403-418. 16p.
Publication Year :
2023

Abstract

NBI-assisted plasma heating with one or two injectors of fast neutral atoms was studied at the Globus-M2 spherical tokamak at the toroidal magnetic fields of 0.8–0.9 T and plasma currents of 0.35–0.4 MA. Measurements of the spatial temperature and electron density distributions, performed using the Thomson scattering diagnostics, showed a twofold increase in heating of plasma electrons during the injection of neutral particles with energies of up to 45 keV at the beam power of 0.75 MW, as compared to the ohmic heating regime. Switching on the second additional beam with the particle energy of up to 30 keV and power of up to 0.5 MW resulted in obtaining the hot ion mode in the range of mean plasma densities of (1.6–10) × 1019 m−3. According to the data of active spectroscopy and neutral particle analyzer diagnostics, in the hot zone, the ion temperature reached 4 keV at the plasma density of 8 × 1019 m−3, which is more than 2.5 times higher than the electron temperature. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1063780X
Volume :
49
Issue :
4
Database :
Academic Search Index
Journal :
Plasma Physics Reports
Publication Type :
Academic Journal
Accession number :
163800526
Full Text :
https://doi.org/10.1134/S1063780X23600214