Back to Search Start Over

Synthesis and antibacterial activity of a ZnO-fibre complex.

Authors :
Fawn Dai
Tao Lin
Xia Huang
Mujia Shi
Fei Zhao
Yaojun Yang
Xiang Nong
Source :
South African Journal of Animal Science. 2023, Vol. 53 Issue 1, p60-74. 15p.
Publication Year :
2023

Abstract

: In this experiment, a ZnO-fibre complex was prepared using the hydrothermal methods of "water solubility," "coupling agent," and "high temperature and high pressure". Binding rate, antibacterial activity, microstructure, and the infrared spectrum were measured using biomimetic digestion, bacterial proliferation tests, and ultra-fine electron microscopes. At first, ZnO-fibre complexes were prepared with different ratios of material and water. They was divided into five groups with ratios of 1:0, 1:4, 1:6, 1:8, and 1:10, respectively. The ZnO-fibre complexes were prepared with different coupling agents on the basis of experiment 1. They were divided into four groups. The ratio for material and water in the control group was 1:0, and in the treatment group, was 1:4. Treatment groups 2 and 3 had 10% guar gum or 10% bamboo fibre polymer composites (BFP) added on the basis of group 1. A ZnO-fibre complex was successfully prepared by adding 10% BFP at a ratio of material:water of 1:4, at a high temperature of 120 °C and a high pressure of 0.3 MPa for 20 min. The ZnO-binding rate reached 99.05%. The zinc oxide may bind to the carbonyl group of bamboo powder and adhere to the surface of and gaps in the bamboo fibre. The growth inhibition rate of Escherichia coli, Salmonella, and Staphylococcus aureus was double that of the common ZnO additive and Zn concentration. It is expected to be used as a slowrelease ZnO additive. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03751589
Volume :
53
Issue :
1
Database :
Academic Search Index
Journal :
South African Journal of Animal Science
Publication Type :
Academic Journal
Accession number :
163750511
Full Text :
https://doi.org/10.4314/sajas.v53i1.07