Back to Search Start Over

Decoding Li+/Na+ Exchange Route Toward High‐Performance Mn‐Based Layered Cathodes for Li‐Ion Batteries.

Authors :
Cao, Bo
Chen, Zhefeng
Cao, Hongbin
Zhu, Chen
Yang, Hongkai
Li, Tianyi
Xu, Wenqian
Pan, Feng
Zhang, Mingjian
Source :
Advanced Functional Materials. 5/12/2023, Vol. 33 Issue 20, p1-9. 9p.
Publication Year :
2023

Abstract

Li+/Na+ exchange has been extensively explored as an effective method to prepare high‐performance Mn‐based layered cathodes for Li‐ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion‐exchange process is crucial to implement the synthetic control of high‐performance layered Mn‐based cathodes, but less studied. Herein, in situ synchrotron X‐ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion‐exchange process of an Mn‐only layered cathode O3‐type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3‐type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature‐resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate‐dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten‐salt method. The findings provide guides for the synthetic control of high‐performance Mn‐based cathodes under mild conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
33
Issue :
20
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
163705174
Full Text :
https://doi.org/10.1002/adfm.202214921