Back to Search Start Over

Aroma Characterization of Roasted Meat and Meat Substitutes Using Gas Chromatography–Mass Spectrometry with Simultaneous Selective Detection and a Dedicated Software Tool, AromaMS.

Authors :
Tzanani, Nitzan
Hindi, Ariel
Marder, Dana
Source :
Molecules. May2023, Vol. 28 Issue 9, p3973. 14p.
Publication Year :
2023

Abstract

The development of healthier and more sustainable food products, such as plant-based meat substitutes (PBMSs), have received significant interest in recent years. A thorough understanding of the aroma composition can support efforts to improve the sensory properties of PBMS products and promote their consumer acceptability. Here, we developed an integrated hardware and software approach for aroma analysis of roasted food based on simultaneous analysis with three complementary detectors. Following the standard procedure of aroma headspace sampling and separation using solid-phase microextraction-gas chromatography, the column flow was split into three channels for the following detectors for the selective detection of nitrogen and sulfur (N/S)-containing compounds: an electron ionization-mass spectrometry for identification through a library search, a nitrogen-phosphorous detector, and a flame-photometric detector (FPD)/pulsed-FPD. Integration of results from the different types of detectors was achieved using a software tool, called AromaMS, developed in-house for data processing. As stipulated by the user, AromaMS performed either non-targeted screening for all volatile organic compounds (VOCs) or selective screening for N/S-containing VOCs that play a major role in the aroma experience. User-defined parameters for library matching and the retention index were applied to further eliminate false identifications. This new approach was successfully applied for comparative analysis of roasted meat and PBMS samples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
9
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
163686732
Full Text :
https://doi.org/10.3390/molecules28093973