Back to Search
Start Over
Twisted regular representations for vertex operator algebras.
- Source :
-
Journal of Algebra . Sep2023, Vol. 629, p124-161. 38p. - Publication Year :
- 2023
-
Abstract
- This paper is to study what we call twisted regular representations for vertex operator algebras. Let V be a vertex operator algebra, let σ 1 , σ 2 be commuting finite-order automorphisms of V and let σ = (σ 1 σ 2) − 1. Among the main results, for any σ -twisted V -module W and any nonzero complex number z , we construct a weak σ 1 ⊗ σ 2 -twisted V ⊗ V -module D σ 1 , σ 2 (z) (W) inside W ⁎. Let W 1 , W 2 be σ 1 -twisted, σ 2 -twisted V -modules, respectively. We show that P (z) -intertwining maps from W 1 ⊗ W 2 to W ⁎ are the same as homomorphisms of weak σ 1 ⊗ σ 2 -twisted V ⊗ V -modules from W 1 ⊗ W 2 into D σ 1 , σ 2 (z) (W). We also show that a P (z) -intertwining map from W 1 ⊗ W 2 to W ⁎ is equivalent to an intertwining operator of type ( W ′ W 1 W 2 ) , which is a twisted version of a result of Huang and Lepowsky. Finally, we show that for each τ -twisted V -module M with τ any finite-order automorphism of V , the coefficients of the q -graded trace function lie in D τ , τ − 1 (− 1) (V) and generate a τ ⊗ τ − 1 -twisted V ⊗ V -submodule isomorphic to M ⊗ M ′. [ABSTRACT FROM AUTHOR]
- Subjects :
- *VERTEX operator algebras
*COMPLEX numbers
*AUTOMORPHISMS
*HOMOMORPHISMS
Subjects
Details
- Language :
- English
- ISSN :
- 00218693
- Volume :
- 629
- Database :
- Academic Search Index
- Journal :
- Journal of Algebra
- Publication Type :
- Academic Journal
- Accession number :
- 163638156
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2023.03.029