Back to Search Start Over

Two regularity criteria of solutions to the liquid crystal flows.

Authors :
Li, Qiang
Yuan, Baoquan
Source :
Mathematical Methods in the Applied Sciences. 5/30/2023, Vol. 46 Issue 8, p9167-9176. 10p.
Publication Year :
2023

Abstract

In this paper, we derive two regularity criteria of solutions to the nematic liquid crystal flows. More precisely, we prove that the local smooth solution (u,d)$$ \left(u,d\right) $$ is regular if and only if one of the following two conditions is satisfied: (i) ∇huh∈L2p2p−3(0,T;Lp(ℝ3)),∂3d∈L2qq−3(0,T;Lq(ℝ3)),32<p≤∞,3<q≤∞$$ {\nabla}_h{u}_h\in {L}^{\frac{2p}{2p-3}}\left(0,T;{L}^p\left({\mathbb{R}}^3\right)\right),{\partial}_3d\in {L}^{\frac{2q}{q-3}}\left(0,T;{L}^q\left({\mathbb{R}}^3\right)\right),\frac{3}{2}<p\le \infty, 3<q\le \infty $$ and (ii) ∇huh∈Lq(0,T;Lp(ℝ3)),3p+2q≤1,3<p<4$$ {\nabla}_h{u}_h\in {L}^q\left(0,T;{L}^p\left({\mathbb{R}}^3\right)\right),\frac{3}{p}+\frac{2}{q}\le 1,3<p<4 $$. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01704214
Volume :
46
Issue :
8
Database :
Academic Search Index
Journal :
Mathematical Methods in the Applied Sciences
Publication Type :
Academic Journal
Accession number :
163604217
Full Text :
https://doi.org/10.1002/mma.9045