Back to Search Start Over

A flux-tunable YBa2Cu3O7 quantum interference microwave circuit.

Authors :
Uhl, Kevin
Hackenbeck, Daniel
Füger, Christoph
Kleiner, Reinhold
Koelle, Dieter
Bothner, Daniel
Source :
Applied Physics Letters. 5/1/2023, Vol. 122 Issue 18, p1-5. 5p.
Publication Year :
2023

Abstract

Josephson microwave circuits are essential for the currently flourishing research on superconducting technologies, such as quantum computation, quantum sensing, and microwave signal processing. To increase the possible parameter space for device operation with respect to the current standards, many materials for superconducting circuits are under active investigation. Here, we present the realization of a frequency-tunable, weakly nonlinear Josephson microwave circuit made of the high-temperature cuprate superconductor YBa2Cu3O7 (YBCO), a material with a high critical temperature and a very high critical magnetic field. An in situ frequency-tunability of ∼ 300 MHz is achieved by integrating a superconducting quantum interference device (SQUID) into the circuit based on Josephson junctions directly written with a helium ion microscope (HIM). Our results demonstrate that YBCO-HIM-SQUID microwave resonators are promising candidates for quantum sensing and microwave technology applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
122
Issue :
18
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
163561853
Full Text :
https://doi.org/10.1063/5.0146524