Back to Search Start Over

Rhizosphere-induced shift in the composition of bacterial community favors mineralization of crop residue nitrogen.

Authors :
Xie, Zhihuang
Yu, Zhenhua
Li, Yansheng
Wang, Guanghua
Tang, Caixian
Mathesius, Ulrike
Liu, Xiaobing
Liu, Junjie
Liu, Judong
Chen, Yuan
Zhang, Shaoqing
Herbert, Stephen J.
Wu, Junjiang
Jin, Jian
Source :
Plant & Soil. May2023, p1-14.
Publication Year :
2023

Abstract

Aims: In agricultural systems, residue amendment is an important practice for nutrient management, but the role of microbes in mineralization of crop residue nitrogen (N) is not well known. Therefore, this study aimed to examine how the residue N mineralization was associated with changes of the microbial community composition in crop rhizosphere.A rhizobox system was deployed to separate the rhizosphere zone into the root-growth (central), and 2 mm (proximal) and 4 mm (transitional) zones away from the central zone, and the gradient change of the residue-N mineralization along the zones was assessed. Soybean plants were grown in a Mollisol without or with amendment of 15N-labelled soybean and maize residues. Furthermore, amplicon sequencing was performed to detect the shift of microbial community composition associated with the residue-N mineralization.The residue-N was mineralized faster in the rhizosphere than the bulk soil, and from soybean residue than maize residue. Greater enrichment of taxa against the unit of residue-N mineralization in the soybean than maize residue treatment was correspondent with the enriched ammonification genes, likely contributing to the enhanced mineralization of soybean residue-N in the rhizosphere. A gradual increase in dissolved organic C and a decrease in available N concentration from the central root zone to the bulk soil, might shift bacterial community favoring the residue-N mineralization in the rhizosphere.The spatial changes in chemical properties across the rhizosphere lead to the recruitment of microbiome taxa to enhance the mineralization of N derived from crop residues.Methods: In agricultural systems, residue amendment is an important practice for nutrient management, but the role of microbes in mineralization of crop residue nitrogen (N) is not well known. Therefore, this study aimed to examine how the residue N mineralization was associated with changes of the microbial community composition in crop rhizosphere.A rhizobox system was deployed to separate the rhizosphere zone into the root-growth (central), and 2 mm (proximal) and 4 mm (transitional) zones away from the central zone, and the gradient change of the residue-N mineralization along the zones was assessed. Soybean plants were grown in a Mollisol without or with amendment of 15N-labelled soybean and maize residues. Furthermore, amplicon sequencing was performed to detect the shift of microbial community composition associated with the residue-N mineralization.The residue-N was mineralized faster in the rhizosphere than the bulk soil, and from soybean residue than maize residue. Greater enrichment of taxa against the unit of residue-N mineralization in the soybean than maize residue treatment was correspondent with the enriched ammonification genes, likely contributing to the enhanced mineralization of soybean residue-N in the rhizosphere. A gradual increase in dissolved organic C and a decrease in available N concentration from the central root zone to the bulk soil, might shift bacterial community favoring the residue-N mineralization in the rhizosphere.The spatial changes in chemical properties across the rhizosphere lead to the recruitment of microbiome taxa to enhance the mineralization of N derived from crop residues.Results: In agricultural systems, residue amendment is an important practice for nutrient management, but the role of microbes in mineralization of crop residue nitrogen (N) is not well known. Therefore, this study aimed to examine how the residue N mineralization was associated with changes of the microbial community composition in crop rhizosphere.A rhizobox system was deployed to separate the rhizosphere zone into the root-growth (central), and 2 mm (proximal) and 4 mm (transitional) zones away from the central zone, and the gradient change of the residue-N mineralization along the zones was assessed. Soybean plants were grown in a Mollisol without or with amendment of 15N-labelled soybean and maize residues. Furthermore, amplicon sequencing was performed to detect the shift of microbial community composition associated with the residue-N mineralization.The residue-N was mineralized faster in the rhizosphere than the bulk soil, and from soybean residue than maize residue. Greater enrichment of taxa against the unit of residue-N mineralization in the soybean than maize residue treatment was correspondent with the enriched ammonification genes, likely contributing to the enhanced mineralization of soybean residue-N in the rhizosphere. A gradual increase in dissolved organic C and a decrease in available N concentration from the central root zone to the bulk soil, might shift bacterial community favoring the residue-N mineralization in the rhizosphere.The spatial changes in chemical properties across the rhizosphere lead to the recruitment of microbiome taxa to enhance the mineralization of N derived from crop residues.Conclusions: In agricultural systems, residue amendment is an important practice for nutrient management, but the role of microbes in mineralization of crop residue nitrogen (N) is not well known. Therefore, this study aimed to examine how the residue N mineralization was associated with changes of the microbial community composition in crop rhizosphere.A rhizobox system was deployed to separate the rhizosphere zone into the root-growth (central), and 2 mm (proximal) and 4 mm (transitional) zones away from the central zone, and the gradient change of the residue-N mineralization along the zones was assessed. Soybean plants were grown in a Mollisol without or with amendment of 15N-labelled soybean and maize residues. Furthermore, amplicon sequencing was performed to detect the shift of microbial community composition associated with the residue-N mineralization.The residue-N was mineralized faster in the rhizosphere than the bulk soil, and from soybean residue than maize residue. Greater enrichment of taxa against the unit of residue-N mineralization in the soybean than maize residue treatment was correspondent with the enriched ammonification genes, likely contributing to the enhanced mineralization of soybean residue-N in the rhizosphere. A gradual increase in dissolved organic C and a decrease in available N concentration from the central root zone to the bulk soil, might shift bacterial community favoring the residue-N mineralization in the rhizosphere.The spatial changes in chemical properties across the rhizosphere lead to the recruitment of microbiome taxa to enhance the mineralization of N derived from crop residues. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0032079X
Database :
Academic Search Index
Journal :
Plant & Soil
Publication Type :
Academic Journal
Accession number :
163516915
Full Text :
https://doi.org/10.1007/s11104-023-06035-1