Back to Search Start Over

Rewilding in Miniature: Suburban Meadows Can Improve Soil Microbial Biodiversity and Soil Health.

Authors :
Tessler, Michael
David, Felix J.
Cunningham, Seth W.
Herstoff, Emily M.
Source :
Microbial Ecology. Apr2023, Vol. 85 Issue 3, p1077-1086. 10p.
Publication Year :
2023

Abstract

Lawns are a ubiquitous, human-made environment created for human enjoyment, leisure, and aesthetics. While net positive for carbon storage, lawns can have negative environmental impacts. Lawns require frequent mowing, which produces high levels of CO2 pollution and kills off native plants. Lawn fertilizing creates its own environmental pollution. One (presumed) ecologically-friendly alternative to lawns is restoration, or rewilding, of these spaces as meadows, which need less maintenance (e.g., infrequent mowing). However, little work has compared lawns against small-scale meadows for biodiversity outside of pollinator studies. Here, we tested the hypotheses that compared to lawns, meadows have (1) unique and higher levels of soil microbial biodiversity and (2) different soil physical and chemical characteristics. We conducted bacterial (16S) and fungal (ITS2) metabarcoding, and found that both bacteria and fungi are indeed more diverse in meadows (significantly so for bacteria). Species composition between meadows and lawns was significantly different for both types of microbes, including higher levels of mycorrhizal fungi in meadows. We also found that chemistry (e.g., potassium and metrics relating to pH) differed significantly between lawns and meadows and was more optimal for plant growth in the meadows. We believe these differences are caused by the different organisms dwelling in these habitats. In summary, these findings point to notable—positive—shifts in microbial and chemical compositions within meadows, further indicating that meadow restoration benefits biodiversity and soil health. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00953628
Volume :
85
Issue :
3
Database :
Academic Search Index
Journal :
Microbial Ecology
Publication Type :
Academic Journal
Accession number :
163485897
Full Text :
https://doi.org/10.1007/s00248-023-02171-4