Back to Search Start Over

Synthesis of Graphene Oxide from Sugarcane Dry Leaves by Two-Stage Pyrolysis.

Authors :
Thangaraj, Baskar
Mumtaz, Fatima
Abbas, Yawar
Anjum, Dalaver H.
Solomon, Pravin Raj
Hassan, Jamal
Source :
Molecules. Apr2023, Vol. 28 Issue 8, p3329. 14p.
Publication Year :
2023

Abstract

Natural or synthetic graphite as precursors for the preparation of graphene oxide (GO) have constraints due to their limited availability, high reaction temperature for processing of synthetic graphite and higher generation cost. The use of oxidants, long reaction duration, the generation of toxic gases and residues of inorganic salts, the degree of hazard and low yield are some of the disadvantages of the oxidative-exfoliation methods. Under these circumstances, biomass waste usage as a precursor is a viable alternative. The conversion of biomass into GO by the pyrolysis method is ecofriendly with diverse applications, which partially overcomes the waste disposal problem encountered by the existing methods. In this study, graphene oxide (GO) is prepared from dry leaves of sugarcane plant through a two-step pyrolysis method using ferric (III) citrate as a catalyst, followed by treatment with conc. H2SO4. The synthesized GO is analyzed by UV-Vis., FTIR, XRD, SEM, TEM, EDS and Raman spectroscopy. The synthesized GO has many oxygen-containing functional groups (–OH, C–OH, COOH, C–O). It shows a sheet-like structure with a crystalline size of 10.08 nm. The GO has a graphitic structure due to the Raman shift of G (1339 cm−1) and D (1591 cm−1) bands. The prepared GO has multilayers due to the ratio of 0.92 between ID and IG. The weight ratios between carbon and oxygen are examined by SEM-EDS and TEM-EDS and found to be 3.35 and 38.11. This study reveals that the conversion of sugarcane dry leaves into the high-value-added material GO becomes realistic and feasible and thus reduces the production cost of GO. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
8
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
163455586
Full Text :
https://doi.org/10.3390/molecules28083329