Back to Search Start Over

Effects of Borax, Sucrose, and Citric Acid on the Setting Time and Mechanical Properties of Alkali-Activated Slag.

Authors :
Li, Peiqing
Chen, Deyong
Jia, Zhirong
Li, Yilin
Li, Shuaijun
Yu, Bin
Source :
Materials (1996-1944). Apr2023, Vol. 16 Issue 8, p3010. 15p.
Publication Year :
2023

Abstract

The setting time of alkali-activated slag (AAS) binders is extremely short, while traditional retarders of Portland cement may be invalid for AAS. To find an effective retarder with a less negative impact on strength, borax (B), sucrose (S), and citric acid (CA) were selected as potential retarders. The setting time of AAS with different admixtures dosages of 0%, 2%, 4%, 6%, and 8%, and the unconfined compressive strength and beam flexural strength of 3 d, 7 d, and 28 d AAS mortar specimens were tested. The microstructure of AAS with different additives was observed by scanning using an electron microscope (SEM), and the hydration products were analyzed by energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and thermogravimetric analysis (DT-TGA) to explain the retarding mechanism of AAS with different additives. The results showed that the incorporation of borax and citric acid could effectively prolong the setting time of AAS more than that of sucrose, and the retarding effect is more and more obvious with the increase in borax and citric acid dosages. However, sucrose and citric acid negatively influence AAS's unconfined compressive strength and flexural stress. The negative effect becomes more evident with the increase in sucrose and citric acid dosages. Borax is the most suitable retarder for AAS among the three selected additives. SEM-EDS analysis showed that the incorporation of borax does three things: produces gels, covers the surface of the slag, and slows down the hydration reaction rate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
8
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
163437492
Full Text :
https://doi.org/10.3390/ma16083010