Back to Search Start Over

Observing strongly confined multiexcitons in bulk-like CsPbBr3 nanocrystals.

Authors :
Strandell, Dallas P.
Kambhampati, Patanjali
Source :
Journal of Chemical Physics. 4/21/2023, Vol. 158 Issue 15, p1-6. 6p.
Publication Year :
2023

Abstract

We monitor the time-resolved photoluminescence (t-PL) from CsPbBr3 perovskite nanocrystals with a time resolution of 3 ps, which is fast enough to resolve emission from potential multiexcitonic states. Being 15 nm in length and twice the Bohr length, these nanocrystals are either weakly confined or bulk-like. In contrast to this expectation of weak confinement, emission from multiexcitons is observed with binding energies consistent with strongly confined quantum dots. In addition to emission from biexcitons, emission from triexcitons is observed. The triexciton emission includes both S and P recombination channels. Excitation with different amounts of excess energy yields the same PL spectral dynamics, indicating that there are no hot carrier effects, and the electronic structure of the absorbing states is the same. The kinetics of the multiexciton populations are presented in two ways. The kinetics are first shown in a spectrally integrated form, showing faster t-PL at higher fluences independent of excitation excess energy. Both excess energies show the same saturation response. In the second way of presenting the kinetics, the multiexciton populations are decomposed and presented as transients and saturation curves. These decomposed spectra into exciton, biexciton, and triexciton populations enable further insight into their kinetics and fluence dependence. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
158
Issue :
15
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
163331630
Full Text :
https://doi.org/10.1063/5.0142113