Back to Search
Start Over
Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data.
- Source :
-
Journal of Computational Biology . Apr2023, Vol. 30 Issue 4, p518-537. 20p. - Publication Year :
- 2023
-
Abstract
- Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10665277
- Volume :
- 30
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Journal of Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- 163317904
- Full Text :
- https://doi.org/10.1089/cmb.2022.0357