Back to Search Start Over

Standing genetic variation fuels rapid evolution of herbicide resistance in blackgrass.

Authors :
Kersten, Sonja
Jiyang Chang
Huber, Christian D.
Voichek, Yoav
Lanz, Christa
Hagmaier, Timo
Lang, Patricia
Lutz, Ulrich
Hirschberg, Insa
Lerchl, Jens
Porri, Aimone
Van de Peer, Yves
Schmid, Karl
Weigel, Detlef
Rabanal, Fernando A.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 4/18/2023, Vol. 120 Issue 16, Following p1-11. 52p.
Publication Year :
2023

Abstract

Repeated herbicide applications in agricultural fields exert strong selection on weeds such as blackgrass (Alopecurus myosuroides), which is a major threat for temperate climate cereal crops. This inadvertent selection pressure provides an opportunity for investigating the underlying genetic mechanisms and evolutionary processes of rapid adaptation, which can occur both through mutations in the direct targets of herbicides and through changes in other, often metabolic, pathways, known as non-target-site resistance. How much target-site resistance (TSR) relies on de novo mutations vs. standing variation is important for developing strategies to manage herbicide resistance. We first generated a chromosome-level reference genome for A. myosuroides for population genomic studies of herbicide resistance and genome-wide diversity across Europe in this species. Next, through empirical data in the form of highly accurate long-read amplicons of alleles encoding acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS) variants, we showed that most populations with resistance due to TSR mutations—23 out of 27 and six out of nine populations for ACCase and ALS, respectively—contained at least two TSR haplotypes, indicating that soft sweeps are the norm. Finally, through forward-in-time simulations, we inferred that TSR is likely to mainly result from standing genetic variation, with only a minor role for de novo mutations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
120
Issue :
16
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
163118882
Full Text :
https://doi.org/10.1073/pnas.2206808120